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Experimental observations concerning the time dependent variation in the room
temperature microhardness of porous compacts of nanocrystalline Palladium are
presented. These data and the earlier findings on the elevated temperature response of
compacts of nanocrystalline composites Fe-63 vol% TiN and Ni-58 vol% TiN are interpreted
as due to power law creep. The equations developed are validated using the experimental
results. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Mechanical behaviour of nanostructured (n-) materials
is examined in many papers and is also discussed in
several reviews (see, for example, refs. [1–6]). Obtain-
ing large specimens through the powder metallurgical
route for mechanical testing has been difficult. The pro-
cessing route/processing sequence strongly affects the
mechanical response. In a compact grain/pore size and
shape, their distributions, other flaws/defects and their
distribution, nature of the bond present in the material,
impurity level, second phases/dopants, microstructures
on a variety of length scales, internal stresses, surface
condition, externally applied stresses, duration of stress
application and temperature of deformation all influ-
ence the mechanical properties.

For structural applications, compacts of (near-) full
density are needed. But a porous microstructure is de-
sired for some other applications, e.g., catalytic [7], or-
thopaedic/dental implant [8] applications. That means
that it is often necessary to prepare compacts of differ-
ent relative densities out of the same material powders.
To achieve this, an understanding of the changes in the
mechanical response of compacts with the relative den-
sity should be available. Evidently, the mechanical re-
sponse of a (near-) fully dense compact should be used
as the standard/base line against which comparisons are
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ultimately made. But, no quantitative studies are avail-
able at present that correlate the mechanical response
of nanocrystalline porous compacts with that of fully
dense compacts. Such studies are common in the litera-
ture on powder metallurgy of materials of conventional
grain sizes (see, for example, refs. [9–11]). It is known
from those investigations that elastic properties like
the shear modulus, the Poisson ratio, plastic/viscous
properties like yield/tensile strength, ductility, creep
behaviour etc. change with the relative density. This
has a bearing on the processing characteristics, the con-
ditions of processing, the load bearing capacity of the
resultant component and so on. If nanostructured ma-
terials are to be exploited on a large scale, a data-base
of this kind has to be generated.

The relative density of a compact is found from a
comparison of the weight and volume of that compact
with those of a fully dense compact. Such a comparison,
however, gives only an idea about the total pore volume.
But at the local level, the behaviour can be different in
two compacts of equal relative density, if the size and
shape distributions of pores are different.

In this paper room temperature microhardness vari-
ations in n-Pd compacts of different relative densities,
which are regarded as specimens pertaining to a model
system, are reported at different locations as a function
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of load application. These results as well as the ear-
lier experimental results of Ogino et al. [12] concern-
ing microhardness variations in nanocrystalline Fe-63
vol% TiN and Ni-58 vol% TiN composites as func-
tions of time of load application and test temperature,
were analysed using equations developed based on an
assumption that the time dependent variation in micro-
hardness is due to creep flow. We believe this to be
a reasonable assumption because even in fully dense
high melting materials like n-Ni and nano-Ni-W alloy
creep flow was present at room temperature [13, 14]. It
is known [15] that, if anything, deformation becomes
easier as the microstructure becomes less dense.

But there are also situations where the nanocrys-
talline material is brittle at room temperature, e.g.,
nanocomposites of high melting phases, nanostruc-
tured materials contaminated by brittle oxides etc. [1–
6]. Therefore, it appears reasonable to suggest that
creep flow in nanocrystalline materials at room temper-
ature can be expected only under conditions that favour
creep flow, e.g., in single phase materials, materials of
relatively low melting points, factors and dopants that
enhance the diffusivity of materials etc. Needless to
say in most—if not all—nanostructured materials, the
creep effects become stronger with increasing temper-
ature of deformation.

This work is at the level of phenomenology. A more
detailed investigation dealing with local microstructure
changes accompanying plastic/creep flow will be pre-
sented in the future.

2. Experimental
Pure nanocrystalline Pd powders were synthesized
from coarse grained Pd nuggets of 99.999% purity us-
ing the gas condensation technique [16]. The machine
used for this purpose was built, according to our de-
sign, by HBI GmbH, Germany. A tungsten boat was
used for heating and evaporating Pd in an ultra high
vacuum (UHV) chamber at a low helium gas pressure
of 10 mbar. Metal clusters, condensed on a rotating
cold finger filled with liquid nitrogen, were scraped
and transferred under UHV conditions to a compaction
unit. The powders were compacted at temperatures
ranging from 20 to 300◦C and pressures that lay be-
tween 400 MPa and 1 GPa to discs of 9.5 mm diameter
and thickness varying from 0.15 to 1.00 mm. In all
8 compacts were made. Average relative density, ρav,
of each compact was calculated from the mass and the
measured volume of the sample. The average density of
the compacts ranged from 58 to 94% of the theoretical
density. X-ray diffraction was used to check the phase
purity on a Siemens D 5000 X-ray diffraction unit.
Sample purity was checked by energy dispersive X-ray
analysis on an EDAX CDU Leaf Detector attached to
a Philips XL 30 FEG machine. Grain size of the com-
pacts was determined using Cu radiation in a Siemens
D-5000 diffractometer working in the Bragg-Brentano
geometry. Average grain size was calculated from the
broadening of the Bragg peaks in the XRD patterns us-
ing the Scherrer formula [17]. As this formula does not
take into account the rms strain, to ensure the reliability
of the values obtained, grain size, microstructure and

grain size distribution were also characterised by high
resolution scanning electron microscopy (HRSEM) on
a Philips XL 30 FEG machine and atomic force mi-
croscopy (AFM) (Thermo Microscopes CP). The aver-
age grain sizes obtained by the three methods were in
good agreement. Fig. 1, obtained using AFM, in which
the average grain size and grain size distribution are
indicated, is an example.

Vickers microhardness values at different locations
in each of the 8 compacts were obtained on a micro-
hardness tester of Helmut Fischer make capable of ap-
plying a constant load for different periods of time. As
this instrument works on the principle of magnetostric-
tion, internal heating may introduce significant errors in
the readings after some time. Therefore, the maximum
permissible time for making reliable measurements at
the load chosen for the present experiments (=1 N) was
found out first using a standard specimen. For this pur-
pose, a coarse grained alumina specimen of bimodal
grain size distribution (the mean values were 8 µm and
21 µm) was chosen as the standard. In this material, at
room temperature no creep effects are expected and so
the microhardness should be independent of the time of
load application. Fig. 2 presents the findings. It is clear
that the instrument errors affect the results for times
of load application greater than 50 s. Thus, in the n-Pd
compacts if the microhardness varies with time at a load
of 1 N at a time interval of less than 50 s, this should
be regarded as a genuine creep effect. This upper limit
of 50 s is also beneficial for two other reasons: (a) at
longer time intervals, perceptible grain growth could be
present in Pd [18]; (b) this short time limit will allow
a comparison between the response during a short du-
ration test and that obtained over a long period of time
[12] (In those tests [12], unlike the present machine that
works on the principle of magnetostriction, a conven-
tional Vickers microhardness tester was used on which
tests of long duration could be carried out without the
introduction of artefacts/unreliability in the results.). In
view of the above, the time of load application in the
microhardness tests was kept below 50 s. Fig. 2 reveals

Figure 1 Grain size - frequency distribution in a Pd compact of average
grain size ≈13 nm obtained using an atomic force microscope and the
software available with the equipment.
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Figure 2 Depth of indenter penetration-time of load application rela-
tionship for a coarse grained alumina standard sample. Load applied =
1 N.

in addition that the microhardness reaches its steady
state/maximum value within a very small fraction of
the time of load application. This result is consistent
with the assumption that the microhardness test may
be analysed as a quasi-steady state process. A software
installed in the microhardness tester gave at the onset
point of the steady state the values of the microhardness
(H) and the corresponding Young’s modulus (E).

The procedure used to obtain the experimental
microhardness—time of load application—test temper-
ature curves for Fe-63 vol% TiN and Ni-58 vol% TiN
nanocomposites, which are also examined in Section
4, are given elsewhere [12].

3. A phenomenological analysis of
micro-indentation creep in nanostructured
materials

The microindenter has a non-uniform cross-section.
The slant side often consists of flat faces, which will
introduce discontinuities in the stress and strain fields.
Material flow opposite to the direction of indenter pen-
etration gives rise to frictional forces. To simplify the
analysis, following Li et al. [19] two assumptions are
made: (a) the penetration of a compact by a microin-
denter is treated as a quasi-steady state process, and
(b) the microhardness—time relationship for a Vickers
diamond pyramid-conical indenter is assumed to differ
from that for a simple conical indenter by an unknown
constant. The latter approximation amounts to ignor-
ing the discontinuities in the stress distribution so that
integration and differentiation are possible.

3.1. Time-dependent microhardness
variation

For certain functional applications, it may be neces-
sary to produce compacts of less than 100% theoretical
density. Such compacts will be reasonably homoge-
neous and practically useful. The aim is to obtain an
expression for hardness as a function of time of load

application for such materials in a microhardness test,
H = H(t). We visualise three possibilities.

Case 1: This is a trivial solution for which H(t) = H0,
where H0 is the microhardness at the commencement
of load application. Such a situation is encountered
when there is no creep effect in the material under the
given experimental conditions, e.g., a nanocrystalline
ceramic compact subjected to a microhardness test at
room temperature. In this case, the microhardness re-
mains constant throughout a test.

Case 2: A large subcutaneous pore/cavity is present
right below the point at which indenter penetration
takes place or the compaction in the vicinity of the
site of indentation is extremely inhomogeneous. In this
case the microhardness variation with time will not be
continuous, but the hardness will vary at different rates
at different times of load application. (There will be
discontinuities in the relationship.) A general mathe-
matical treatment of this problem is not possible and
materials with such microstructures will be unusable in
service.

Case 3: This is the useful case discussed above. The
following analysis is restricted to this case.

For (a pyramid-) conical indenter [19]

H = (W/πa2) (1)

where H is the microhardness, W is the load applied
and ‘a’ is the instantaneous radius of the indentation.
H is related to the uniaxial yield stress, σ , as H = C1 σ ,
where C1 is an unknown constant for a nanocrystalline
material. From Equation 1,

ȧ
/

a = −(Ḣ
/

2H ) (2)

where the ‘dot’ represents a time derivative.
Following Li et al. [19], the radial velocity is as-

sumed to vary linearly with ȧ. As the cone angle of
the indenter is fixed, ( h

a ) = constant, the tangent of the
semi-angle of the cone. Therefore, h ∝ a; ḣ ∝ ȧ By
definition, the mean strain rate of deformation,

ε̇ = ḣ
h , Or

ε̇ = C2
(

ȧ
a

) (3)

where C2 is another unknown constant. From
Equations 2 and 3

ε̇ = −C3(Ḣ
/

H ); C3 = (C2
/

2) (4)

In view of the creep equation ε̇ = K1σ
N (K1 and N

are constants under isostructural, isothermal conditions
[20]), the relation H = C1·σ and Equation 4,

− (Ḣ
/

H ) = C4 · H N; C4 = 1
/(

C3 · CN
1

)
(5)

From Equation 5

− (d H/H N+1) = C4.dt (6)
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This integrates to give

(1/H N ) = C5t + C6; C5 = (C4 · N ) (7)

with t the time of load application. The constant of
integration C6 is obtained as equal to

(
1
/

H N
max

)
from

the initial condition that at t = 0, H equals its ini-
tial/maximum value, Hmax. Therefore,

−N ln H = ln[1/H N
max(C7t + 1)];

C7 = (C5 H N
max) (8)

= −N ln Hmax + ln(C7t + 1) (9)

As N = (1/m), where m is the strain-rate sensitivity
index, Equation 9 is transformed into

H = Hmax · e−m ln(C7t+1) (10)

On first order approximation,

H ≈ Hmax − A ln(Bt + 1);

A = Hmax · m; B = C7 (11)

Equation 11 describes the variation of hardness with
time in a microhardness test. This expression contains
a single fitting parameter, B.

3.2. Activation energy for rate controlling
flow

As the temperature dependence of deformation
follows the Maxwell-Boltzmann relationship, from
Equation 5

− (Ḣ/H ) = A1(H/Hc)N exp(−Q/RT ) (12)

where A1 is a grain-size dependent constant (with a
dimension of time−1), which has absorbed the thermal
vibration frequency of 1013 s−1, Q the activation energy
for the rate controlling process, R the gas constant, T
the absolute temperature of deformation and Hc is a
reference hardness value (chosen as applicable to the
domain of interest) introduced to ensure dimensional
consistency. Therefore,

− (Ḣ/H ) = A2 H N exp(−Q/RT ); A2 = (A1/H N
c )

(13)
Depending on the range covered in the experiments

in the {−(Ḣ/H )− H − T } space, it may be convenient
to determine Q either by plotting ln(−Ḣ

/
H ) against

1/T at a constant hardness value H1 or ln H against 1/T
at a constant −(Ḣ/H ) value [20]. From Equation 13 it
follows that

Q = −{slope of the ln(−Ḣ/H ) vs.

(1/T ) plot at H = H1} · R (14)

T AB L E I Young’s modulus-microhardness-time dependence relationships in n-Pd Compacts of different densities

S.no.
Av. grain
size (nm) ρav (%)

Einitial

(GPa)

Hinitial

(Hmax)
(MPa)

Hmin

(MPa) m A (MPa) B (s−1)
(Hmax·m)
(MPa)

|A−Hmax·m|
/A (% error)∗

1 62 94 67.601 1326 1266 0.01 12.53 2.35 13.26 6
2 62 94 76.600 1605 1520 0.01 17.70 2.26 19.26 9
3 62 94 68.199 1294 1218 0.01 16.53 1.62 18.12 10
4 11 63 10.000 519 473 0.02 10.44 1.59 11.42 9
5 11 63 7.131 379 344 0.02 6.22 1.81 6.82 10
6 11 63 5.210 254 233 0.02 4.90 1.46 5.33 9
7 21 90 4.651 249 238 0.01 2.17 2.70 2.24 3
8 21 90 12.400 490 472 0.01 5.43 2.83 5.49 1
9 21 90 8.510 407 387 0.01 4.35 1.97 4.48 3

10 21 90 3.041 157 149 0.01 1.72 1.70 1.88 9
11 21 90 2.271 131 126 0.01 1.02 1.56 1.05 3
12 11 71 26.199 1428 1298 0.02 26.17 2.95 28.56 9
13 11 71 34.700 1546 1389 0.02 31.42 2.88 34.01 8
14 11 71 3.831 177 170 0.01 1.49 2.04 1.59 7
15 11 71 8.479 379 362 0.01 3.19 4.67 3.41 7
16 15 89 40.899 1556 1404 0.025 35.02 1.37 38.90 11
17 15 89 45.200 1637 1507 0.02 31.12 1.13 34.38 10
18 15 89 45.300 1696 1539 0.02 34.64 1.65 37.31 8
19 15 89 48.400 1288 1198 0.01 12.36 41.06 12.88 4
20 16 58 23.399 957 901 0.01 10.21 4.72 10.53 3
21 16 58 22.301 930 872 0.01 11.73 2.71 12.09 3
22 16 58 29.501 1024 957 0.01 13.36 2.73 14.34 7
23 16 58 22.301 717 681 0.01 5.27 28.05 5.74 9
24 19 70 24.800 980 930 0.02 15.59 7.02 16.66 7
25 19 70 25.401 1046 945 0.02 19.39 3.92 20.92 8
26 19 70 27.099 1131 999 0.025 26.01 2.97 28.28 9
27 33 80 18.501 782 761 0.01 4.11 6.27 3.91 5
28 33 80 16.000 788 752 0.01 6.38 7.25 6.30 1
29 33 80 19.199 854 825 0.01 5.52 5.03 5.98 8
30 33 80 35.100 1369 1260 0.01 13.79 46.58 15.06 9

∗In theory, this difference should be zero. So, smaller this error, better is the accuracy of Fit.

6116



or

Q = {slope of the ln H vs .1/T plot at a constant

(−Ḣ/H)value}.R.N (15)

4. Results and discussion
4.1. New results
The average relative density, ρav, of the 8 compacts
varied from 58 to 94% and the average grain size, L,
from 11 nm to 62 nm. In each compact, the microhard-
ness was measured at different locations. As machine
outputs, the maximum microhardness value, Hmax, in
a given test and the corresponding value of E were
obtained. The results are presented in Table I.

As H, E and ρ are directly related [21], it was con-
cluded, consistent with the earlier findings [22, 23],
that the local density in a compact changed from one
location to the next. A careful examination revealed the
following.

(a) Sometimes the compact had a reasonably uniform
density in its entire volume, which was close to the
average relative density of the compact (see Fig. 3a
corresponding to a compact of ρav = 58% and Table I).

(b) Occasionally, because of the accidental choice of
sites, the local densities were close to each other but
they were clearly different from the ρav value of the
compact (see Fig. 3b from a compact of ρav = 89%
and Table I).

(c) In some cases the local densities differed widely
and were also clearly different from the average density
of the compact (see data in Table I pertaining to the
compact with ρav = 90%).

The results reveal (i) that nanocrystalline compacts
are highly non-uniform with regard to the local me-
chanical response, and (ii) that depending on the lo-
cation selected for a microhardness measurement, the
local response may be close to or vastly different from
the average response one would obtain by subjecting
the entire specimen to a macro-measurement. In this
view, the earlier finding [22, 23] that in a Pd compact
the microhardness varied between 2.2 and 4.3 GPa is
attributable to the local variations in the density of the
compact. The other finding [22, 23] that spatial varia-
tion in the microhardness of n-Pd compacts was more
than in n-Cu compacts is traced to the nature of the
neighbourhood randomly chosen for the microhardness
measurements. It is also conceivable that in those ex-
periments compaction was more uniform in n-Cu than
in n-Pd.

For the 30 experimental conditions listed in Ta-
ble I, H-t (t ≤ 50 s) combinations were directly ob-
tained from the microhardness tester. It was verified
that Equation 11 was satisfied at all the 30 locations.
Fig. 4 displays some results.

From the raw H-t data and Equation 5, the H vs.
(−Ḣ/H ) relationship was obtained for all the 30 ex-
perimental sites in the 8 compacts. Fig. 5 presents
three representative examples. In all the 30 cases, the
H (which is proportional to the uniaxial yield stress)

Figure 3 Micrographs indicating microindentations and their charac-
teristic surroundings in: (a) a Pd compact of average relative density
58% (b) a Pd compact of average relative density 89%.

Figure 4 H-t relationship. Symbols represent experimental points. Full
curves are predictions based on Equation 11. Compacts of: (a) ρav =
94%, (b)–(c) ρav = 90%, (d)–(e) ρav = 71%.

vs. (−Ḣ/H ) (which is proportional to the correspond-
ing strain rate) relationship was linear over the nearly
two orders of magnitude change in strain rate present
in a microhardness test. That is, the slope of these
plots and hence the strain rate sensitivity index, m
(=1/N), remained constant during every microhard-
ness test, which validates the assumption made in the
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Figure 5 H − [−( Ḣ
H )] plots derived from curves similar to those pre-

sented in Fig 4. H is proportional to the uniaxial flow stress; [−( Ḣ
H )] is

proportional to the corresponding strain rate. (a) ρav = 94%, (b) ρav =
90%, (c) ρav = 71%.

analysis that N has a constant value in a microhard-
ness test. In the present experiments m varied between
0.01 and 0.025, i.e., the values lay in the range com-
monly encountered during creep. A, B, m, (Hmax·m)
and the percentage difference between the values of A
and (Hmax·m) (which should be zero according to the
analysis) were obtained using figures similar to Figs 4
and 5 and Equations 5 and 11. These findings are also
included in Table I.

From Table I and the earlier results [22, 23], it is
clear that microhardness can vary significantly in a
given compact from one location to the next and that
it is not easy to assign a mean microhardness value
corresponding to a mean compact density, ρav.

4.2. Results of Ogino et al. [12]
Ogino et al. [12] have plotted H-t experimental curves
at different temperatures for Fe-63 vol% TiN and Ni-
58 vol% TiN nanocomposites (Fig. 6 of ref. [12] cov-
ering a time interval of 600 s). From these data it is
possible to validate Equation 11 and obtain the activa-
tion energy for the rate controlling deformation process
(Equation 15).

Equation 11 was obeyed at all temperatures in case
of both the composites. Fig. 6 displays an example
each for the two composites. As before, the log H −
log(−Ḣ/H ) relationship could be obtained for both
the materials at all temperatures. Fig. 7 displays these
plots. The following observations are in order.

(a) In these tests, the strain rate varied by an order of
magnitude during a microhardness test.

(b) Although m was constant in a test, its magnitude
depended on the test temperature, particularly in the
Fe-63 vol% TiN composite. But the variation was not
systematic. And so, the scatter was attributed to experi-
mental errors. As a result, for each material the average
value of m (the mean value of m in the temperature
interval) was used to calculate the activation energy for
the rate controlling flow process.

Figure 6 H-t relationship: (a) a Fe-63 vol% TiN composite of average
grain size 12 nm, tested at 573 K; (b) a Ni-58 vol% TiN composite of
average grain size 10 nm, tested at 598 K. Full curves are predictions
based on Equation 11. Symbols represent experimental data given in ref.
[12].

Figure 7 H − [−( Ḣ
H )] plots derived from curves similar to those pre-

sented in Fig 6. H is proportional to the uniaxial flow stress; [−( Ḣ
H )] is

proportional to the corresponding strain rate. (a)–(c) A Fe-63 vol% TiN
composite of average grain size 12 nm, tested respectively at 573, 673
and 773 K; (d)–(h) A Ni-58 vol% TiN composite of average grain size
10 nm, tested respectively at 573, 578, 633, 648 and 673 K. Experimental
points are after ref. [12].
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In Figs 8 and 9 the activation energy for the rate
controlling deformation process is obtained for the two
materials by plotting log H against 1/T at a fixed value
of log(−Ḣ/H ) and using Equation 15. The activation
energy, Q, for the Fe-63 vol% TiN composite was
82 kJ mol−1. Q for the Ni-58 vol% TiN composite
was 140 kJ mol−1. These values are realistic, because
for a host of materials the activation energy for creep
deformation has been reported to be of the order of
0.2–0.7 times the activation energy for self diffusion
of the major elements that constitute the material [24].
The activation energy for self diffusion in α-Fe is 250–
280 kJ mol−1, in α-Ti it is 170 kJ mol−1 and in Ni it is
277–400 kJ mol−1.

The data analysed in this paper pertain to compacts
prepared by consolidation. The average relative density
of the compacts varied between 58 and 94%. Ogino
et al. [12] have not reported the relative density of the
compacts used by them. Based on the present results,
it is reasonable to suggest that in the range of average
relative densities considered, the relationship govern-
ing the time variation of microhardness was similar to
that reported for power law creep in fully dense solids.
Also the relationship was unchanged when the duration

Figure 8 Arrhenius plot for the Fe-63 vol% TiN composite at a constant
log[−( Ḣ

H )] value of 2.6.

Figure 9. Arrhenius plot for the Ni-58 vol% TiN composite at a constant
log[−( Ḣ

H )] value of 3.0.

of measurement was increased from less than 50 s to
about 600 s.

In a future study the time dependent variation of
microhardness of compacts of nearly 100% relative
density, e.g., prepared by electro-deposition, will be
investigated. It is likely that while the relationship will
be the same, the rate of deformation will be different.
It is known from the powder metallurgy literature con-
cerning microcrystalline materials [8–11, 25] that both
Young’s modulus and Poisson’s ratio change with den-
sity and these elastic constants significantly affect the
flow behaviour.

5. Conclusions
The following conclusions could be drawn from this
investigation.

1. Spatial variation in the microhardness of a com-
pact can be large due to differences in density at dif-
ferent locations. Therefore, assigning a microhardness
value for a compact of a given average relative density
will have to be done with caution.

2. In n-Pd compacts of average relative density that
ranged between 58 and 94%, the hardness value and
Young’s modulus were directly related.

3. When creep effects are significant, as in the
present experiments on porous n-Pd compacts and
those of Ogino et al. [12] on Fe-63 vol% TiN and Ni-58
vol% TiN nanocomposites tested at elevated tempera-
tures, the microhardness, H, varies with time, t, as H ≈
Hmax – A ln(Bt + 1), where Hmax is the maximum hard-
ness measured in a microhardness test, A (=Hmax·m)
and B are constants and m is the strain rate sensitivity
index. This expression contains a single fitting param-
eter, B. This equation holds good for both small and
large times of load application in a microhardness test.

4. The relation ε̇ = K1σ
N (ε̇ = uniaxial strain rate,

σ = the corresponding stress, N = 1/m = constant and
K1 = constant) or its analogous version (−Ḣ/H ) =
C4 H N (H = hardness, Ḣ= its time derivative, C4 =
constant) was obeyed in all the micro-indentation tests
reported here.

5. The values of the true activation energy for the
rate controlling process in the deformation of nanocrys-
talline Fe-63 vol% TiN and Ni-58 vol% TiN compos-
ites by micro-indentation were 82 and 140 kJ mol−1

respectively.
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